If it's not what You are looking for type in the equation solver your own equation and let us solve it.
540x^2-2160x=0
a = 540; b = -2160; c = 0;
Δ = b2-4ac
Δ = -21602-4·540·0
Δ = 4665600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4665600}=2160$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2160)-2160}{2*540}=\frac{0}{1080} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2160)+2160}{2*540}=\frac{4320}{1080} =4 $
| 3x+6-6=2x-2-6 | | -10j=-120 | | -3(2s-4)-12=-3(6s+4)-3 | | 10d=-110 | | -3(-5b-8)=3(1+5b) | | -7(x-4)+2(6=2x)=-5x-2x | | 2(-2x-3)-8x=16-x | | 7/6c=4/5 | | x-1=11+3x | | (6/9)=(x+8/4) | | 6600/x=0.10 | | (-9+x/24)=-1 | | 7+(x/16)=6 | | (2/x)=(10/5) | | (8/10)=6/b | | 8/10=6/b | | 2(3x−2)=22 | | (8/10)=(6/b) | | (-5/3x)=10 | | (3x/2)=-12 | | (1/2x)=4 | | 5x+10=-7x+15 | | y-4=32 | | 1+2b-13=-4b-2b | | G(2)=4x | | G(1)=4x | | G(0)=4x | | 4(x-1)-(x+1)=64 | | G(-2)=4x | | 9x^2-18x-20=0 | | G(-1)=4x | | G(-1)=4c |